direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C3×C23.83C23, (C2×C12).42Q8, (C2×C12).313D4, C22.76(C6×D4), C22.25(C6×Q8), C6.92(C22⋊Q8), C6.70(C4.4D4), C23.87(C22×C6), C6.30(C42.C2), C6.36(C42⋊2C2), C2.C42.13C6, (C22×C6).464C23, (C22×C12).405C22, C6.94(C22.D4), (C2×C4⋊C4).11C6, (C6×C4⋊C4).40C2, (C2×C4).5(C3×Q8), (C2×C4).20(C3×D4), (C2×C6).616(C2×D4), (C2×C6).113(C2×Q8), C2.8(C3×C4.4D4), C2.11(C3×C22⋊Q8), C2.5(C3×C42.C2), (C22×C4).14(C2×C6), C2.6(C3×C42⋊2C2), C22.43(C3×C4○D4), (C2×C6).224(C4○D4), (C3×C2.C42).6C2, C2.10(C3×C22.D4), SmallGroup(192,833)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C23.83C23
G = < a,b,c,d,e,f,g | a3=b2=c2=d2=1, e2=g2=b, f2=cb=bc, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bd=db, fef-1=be=eb, bf=fb, bg=gb, cd=dc, geg-1=ce=ec, cf=fc, cg=gc, de=ed, gfg-1=df=fd, dg=gd >
Subgroups: 218 in 134 conjugacy classes, 70 normal (30 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C2×C4, C2×C4, C23, C12, C2×C6, C2×C6, C4⋊C4, C22×C4, C22×C4, C2×C12, C2×C12, C22×C6, C2.C42, C2.C42, C2×C4⋊C4, C3×C4⋊C4, C22×C12, C22×C12, C23.83C23, C3×C2.C42, C3×C2.C42, C6×C4⋊C4, C3×C23.83C23
Quotients: C1, C2, C3, C22, C6, D4, Q8, C23, C2×C6, C2×D4, C2×Q8, C4○D4, C3×D4, C3×Q8, C22×C6, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C6×D4, C6×Q8, C3×C4○D4, C23.83C23, C3×C22⋊Q8, C3×C22.D4, C3×C4.4D4, C3×C42.C2, C3×C42⋊2C2, C3×C23.83C23
(1 157 57)(2 158 58)(3 159 59)(4 160 60)(5 96 101)(6 93 102)(7 94 103)(8 95 104)(9 17 109)(10 18 110)(11 19 111)(12 20 112)(13 105 113)(14 106 114)(15 107 115)(16 108 116)(21 29 121)(22 30 122)(23 31 123)(24 32 124)(25 117 125)(26 118 126)(27 119 127)(28 120 128)(33 41 133)(34 42 134)(35 43 135)(36 44 136)(37 129 137)(38 130 138)(39 131 139)(40 132 140)(45 53 145)(46 54 146)(47 55 147)(48 56 148)(49 141 149)(50 142 150)(51 143 151)(52 144 152)(61 153 161)(62 154 162)(63 155 163)(64 156 164)(65 73 165)(66 74 166)(67 75 167)(68 76 168)(69 77 169)(70 78 170)(71 79 171)(72 80 172)(81 173 181)(82 174 182)(83 175 183)(84 176 184)(85 177 185)(86 178 186)(87 179 187)(88 180 188)(89 98 189)(90 99 190)(91 100 191)(92 97 192)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)(65 67)(66 68)(69 71)(70 72)(73 75)(74 76)(77 79)(78 80)(81 83)(82 84)(85 87)(86 88)(89 91)(90 92)(93 95)(94 96)(97 99)(98 100)(101 103)(102 104)(105 107)(106 108)(109 111)(110 112)(113 115)(114 116)(117 119)(118 120)(121 123)(122 124)(125 127)(126 128)(129 131)(130 132)(133 135)(134 136)(137 139)(138 140)(141 143)(142 144)(145 147)(146 148)(149 151)(150 152)(153 155)(154 156)(157 159)(158 160)(161 163)(162 164)(165 167)(166 168)(169 171)(170 172)(173 175)(174 176)(177 179)(178 180)(181 183)(182 184)(185 187)(186 188)(189 191)(190 192)
(1 105)(2 106)(3 107)(4 108)(5 52)(6 49)(7 50)(8 51)(9 153)(10 154)(11 155)(12 156)(13 57)(14 58)(15 59)(16 60)(17 161)(18 162)(19 163)(20 164)(21 65)(22 66)(23 67)(24 68)(25 169)(26 170)(27 171)(28 172)(29 73)(30 74)(31 75)(32 76)(33 177)(34 178)(35 179)(36 180)(37 81)(38 82)(39 83)(40 84)(41 185)(42 186)(43 187)(44 188)(45 89)(46 90)(47 91)(48 92)(53 98)(54 99)(55 100)(56 97)(61 109)(62 110)(63 111)(64 112)(69 117)(70 118)(71 119)(72 120)(77 125)(78 126)(79 127)(80 128)(85 133)(86 134)(87 135)(88 136)(93 141)(94 142)(95 143)(96 144)(101 152)(102 149)(103 150)(104 151)(113 157)(114 158)(115 159)(116 160)(121 165)(122 166)(123 167)(124 168)(129 173)(130 174)(131 175)(132 176)(137 181)(138 182)(139 183)(140 184)(145 189)(146 190)(147 191)(148 192)
(1 11)(2 12)(3 9)(4 10)(5 146)(6 147)(7 148)(8 145)(13 63)(14 64)(15 61)(16 62)(17 159)(18 160)(19 157)(20 158)(21 71)(22 72)(23 69)(24 70)(25 167)(26 168)(27 165)(28 166)(29 79)(30 80)(31 77)(32 78)(33 175)(34 176)(35 173)(36 174)(37 87)(38 88)(39 85)(40 86)(41 183)(42 184)(43 181)(44 182)(45 95)(46 96)(47 93)(48 94)(49 191)(50 192)(51 189)(52 190)(53 104)(54 101)(55 102)(56 103)(57 111)(58 112)(59 109)(60 110)(65 119)(66 120)(67 117)(68 118)(73 127)(74 128)(75 125)(76 126)(81 135)(82 136)(83 133)(84 134)(89 143)(90 144)(91 141)(92 142)(97 150)(98 151)(99 152)(100 149)(105 155)(106 156)(107 153)(108 154)(113 163)(114 164)(115 161)(116 162)(121 171)(122 172)(123 169)(124 170)(129 179)(130 180)(131 177)(132 178)(137 187)(138 188)(139 185)(140 186)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)(145 146 147 148)(149 150 151 152)(153 154 155 156)(157 158 159 160)(161 162 163 164)(165 166 167 168)(169 170 171 172)(173 174 175 176)(177 178 179 180)(181 182 183 184)(185 186 187 188)(189 190 191 192)
(1 131 107 173)(2 130 108 176)(3 129 105 175)(4 132 106 174)(5 170 50 28)(6 169 51 27)(7 172 52 26)(8 171 49 25)(9 179 155 33)(10 178 156 36)(11 177 153 35)(12 180 154 34)(13 83 59 37)(14 82 60 40)(15 81 57 39)(16 84 58 38)(17 187 163 41)(18 186 164 44)(19 185 161 43)(20 188 162 42)(21 91 67 45)(22 90 68 48)(23 89 65 47)(24 92 66 46)(29 100 75 53)(30 99 76 56)(31 98 73 55)(32 97 74 54)(61 135 111 85)(62 134 112 88)(63 133 109 87)(64 136 110 86)(69 143 119 93)(70 142 120 96)(71 141 117 95)(72 144 118 94)(77 151 127 102)(78 150 128 101)(79 149 125 104)(80 152 126 103)(113 183 159 137)(114 182 160 140)(115 181 157 139)(116 184 158 138)(121 191 167 145)(122 190 168 148)(123 189 165 147)(124 192 166 146)
(1 67 3 65)(2 24 4 22)(5 82 7 84)(6 39 8 37)(9 119 11 117)(10 72 12 70)(13 123 15 121)(14 168 16 166)(17 127 19 125)(18 80 20 78)(21 105 23 107)(25 109 27 111)(26 62 28 64)(29 113 31 115)(30 158 32 160)(33 89 35 91)(34 46 36 48)(38 50 40 52)(41 98 43 100)(42 54 44 56)(45 179 47 177)(49 83 51 81)(53 187 55 185)(57 167 59 165)(58 124 60 122)(61 171 63 169)(66 106 68 108)(69 153 71 155)(73 157 75 159)(74 114 76 116)(77 161 79 163)(85 145 87 147)(86 190 88 192)(90 180 92 178)(93 131 95 129)(94 176 96 174)(97 186 99 188)(101 182 103 184)(102 139 104 137)(110 172 112 170)(118 154 120 156)(126 162 128 164)(130 142 132 144)(133 189 135 191)(134 146 136 148)(138 150 140 152)(141 175 143 173)(149 183 151 181)
G:=sub<Sym(192)| (1,157,57)(2,158,58)(3,159,59)(4,160,60)(5,96,101)(6,93,102)(7,94,103)(8,95,104)(9,17,109)(10,18,110)(11,19,111)(12,20,112)(13,105,113)(14,106,114)(15,107,115)(16,108,116)(21,29,121)(22,30,122)(23,31,123)(24,32,124)(25,117,125)(26,118,126)(27,119,127)(28,120,128)(33,41,133)(34,42,134)(35,43,135)(36,44,136)(37,129,137)(38,130,138)(39,131,139)(40,132,140)(45,53,145)(46,54,146)(47,55,147)(48,56,148)(49,141,149)(50,142,150)(51,143,151)(52,144,152)(61,153,161)(62,154,162)(63,155,163)(64,156,164)(65,73,165)(66,74,166)(67,75,167)(68,76,168)(69,77,169)(70,78,170)(71,79,171)(72,80,172)(81,173,181)(82,174,182)(83,175,183)(84,176,184)(85,177,185)(86,178,186)(87,179,187)(88,180,188)(89,98,189)(90,99,190)(91,100,191)(92,97,192), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)(86,88)(89,91)(90,92)(93,95)(94,96)(97,99)(98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)(158,160)(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)(190,192), (1,105)(2,106)(3,107)(4,108)(5,52)(6,49)(7,50)(8,51)(9,153)(10,154)(11,155)(12,156)(13,57)(14,58)(15,59)(16,60)(17,161)(18,162)(19,163)(20,164)(21,65)(22,66)(23,67)(24,68)(25,169)(26,170)(27,171)(28,172)(29,73)(30,74)(31,75)(32,76)(33,177)(34,178)(35,179)(36,180)(37,81)(38,82)(39,83)(40,84)(41,185)(42,186)(43,187)(44,188)(45,89)(46,90)(47,91)(48,92)(53,98)(54,99)(55,100)(56,97)(61,109)(62,110)(63,111)(64,112)(69,117)(70,118)(71,119)(72,120)(77,125)(78,126)(79,127)(80,128)(85,133)(86,134)(87,135)(88,136)(93,141)(94,142)(95,143)(96,144)(101,152)(102,149)(103,150)(104,151)(113,157)(114,158)(115,159)(116,160)(121,165)(122,166)(123,167)(124,168)(129,173)(130,174)(131,175)(132,176)(137,181)(138,182)(139,183)(140,184)(145,189)(146,190)(147,191)(148,192), (1,11)(2,12)(3,9)(4,10)(5,146)(6,147)(7,148)(8,145)(13,63)(14,64)(15,61)(16,62)(17,159)(18,160)(19,157)(20,158)(21,71)(22,72)(23,69)(24,70)(25,167)(26,168)(27,165)(28,166)(29,79)(30,80)(31,77)(32,78)(33,175)(34,176)(35,173)(36,174)(37,87)(38,88)(39,85)(40,86)(41,183)(42,184)(43,181)(44,182)(45,95)(46,96)(47,93)(48,94)(49,191)(50,192)(51,189)(52,190)(53,104)(54,101)(55,102)(56,103)(57,111)(58,112)(59,109)(60,110)(65,119)(66,120)(67,117)(68,118)(73,127)(74,128)(75,125)(76,126)(81,135)(82,136)(83,133)(84,134)(89,143)(90,144)(91,141)(92,142)(97,150)(98,151)(99,152)(100,149)(105,155)(106,156)(107,153)(108,154)(113,163)(114,164)(115,161)(116,162)(121,171)(122,172)(123,169)(124,170)(129,179)(130,180)(131,177)(132,178)(137,187)(138,188)(139,185)(140,186), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)(145,146,147,148)(149,150,151,152)(153,154,155,156)(157,158,159,160)(161,162,163,164)(165,166,167,168)(169,170,171,172)(173,174,175,176)(177,178,179,180)(181,182,183,184)(185,186,187,188)(189,190,191,192), (1,131,107,173)(2,130,108,176)(3,129,105,175)(4,132,106,174)(5,170,50,28)(6,169,51,27)(7,172,52,26)(8,171,49,25)(9,179,155,33)(10,178,156,36)(11,177,153,35)(12,180,154,34)(13,83,59,37)(14,82,60,40)(15,81,57,39)(16,84,58,38)(17,187,163,41)(18,186,164,44)(19,185,161,43)(20,188,162,42)(21,91,67,45)(22,90,68,48)(23,89,65,47)(24,92,66,46)(29,100,75,53)(30,99,76,56)(31,98,73,55)(32,97,74,54)(61,135,111,85)(62,134,112,88)(63,133,109,87)(64,136,110,86)(69,143,119,93)(70,142,120,96)(71,141,117,95)(72,144,118,94)(77,151,127,102)(78,150,128,101)(79,149,125,104)(80,152,126,103)(113,183,159,137)(114,182,160,140)(115,181,157,139)(116,184,158,138)(121,191,167,145)(122,190,168,148)(123,189,165,147)(124,192,166,146), (1,67,3,65)(2,24,4,22)(5,82,7,84)(6,39,8,37)(9,119,11,117)(10,72,12,70)(13,123,15,121)(14,168,16,166)(17,127,19,125)(18,80,20,78)(21,105,23,107)(25,109,27,111)(26,62,28,64)(29,113,31,115)(30,158,32,160)(33,89,35,91)(34,46,36,48)(38,50,40,52)(41,98,43,100)(42,54,44,56)(45,179,47,177)(49,83,51,81)(53,187,55,185)(57,167,59,165)(58,124,60,122)(61,171,63,169)(66,106,68,108)(69,153,71,155)(73,157,75,159)(74,114,76,116)(77,161,79,163)(85,145,87,147)(86,190,88,192)(90,180,92,178)(93,131,95,129)(94,176,96,174)(97,186,99,188)(101,182,103,184)(102,139,104,137)(110,172,112,170)(118,154,120,156)(126,162,128,164)(130,142,132,144)(133,189,135,191)(134,146,136,148)(138,150,140,152)(141,175,143,173)(149,183,151,181)>;
G:=Group( (1,157,57)(2,158,58)(3,159,59)(4,160,60)(5,96,101)(6,93,102)(7,94,103)(8,95,104)(9,17,109)(10,18,110)(11,19,111)(12,20,112)(13,105,113)(14,106,114)(15,107,115)(16,108,116)(21,29,121)(22,30,122)(23,31,123)(24,32,124)(25,117,125)(26,118,126)(27,119,127)(28,120,128)(33,41,133)(34,42,134)(35,43,135)(36,44,136)(37,129,137)(38,130,138)(39,131,139)(40,132,140)(45,53,145)(46,54,146)(47,55,147)(48,56,148)(49,141,149)(50,142,150)(51,143,151)(52,144,152)(61,153,161)(62,154,162)(63,155,163)(64,156,164)(65,73,165)(66,74,166)(67,75,167)(68,76,168)(69,77,169)(70,78,170)(71,79,171)(72,80,172)(81,173,181)(82,174,182)(83,175,183)(84,176,184)(85,177,185)(86,178,186)(87,179,187)(88,180,188)(89,98,189)(90,99,190)(91,100,191)(92,97,192), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)(86,88)(89,91)(90,92)(93,95)(94,96)(97,99)(98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)(158,160)(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)(190,192), (1,105)(2,106)(3,107)(4,108)(5,52)(6,49)(7,50)(8,51)(9,153)(10,154)(11,155)(12,156)(13,57)(14,58)(15,59)(16,60)(17,161)(18,162)(19,163)(20,164)(21,65)(22,66)(23,67)(24,68)(25,169)(26,170)(27,171)(28,172)(29,73)(30,74)(31,75)(32,76)(33,177)(34,178)(35,179)(36,180)(37,81)(38,82)(39,83)(40,84)(41,185)(42,186)(43,187)(44,188)(45,89)(46,90)(47,91)(48,92)(53,98)(54,99)(55,100)(56,97)(61,109)(62,110)(63,111)(64,112)(69,117)(70,118)(71,119)(72,120)(77,125)(78,126)(79,127)(80,128)(85,133)(86,134)(87,135)(88,136)(93,141)(94,142)(95,143)(96,144)(101,152)(102,149)(103,150)(104,151)(113,157)(114,158)(115,159)(116,160)(121,165)(122,166)(123,167)(124,168)(129,173)(130,174)(131,175)(132,176)(137,181)(138,182)(139,183)(140,184)(145,189)(146,190)(147,191)(148,192), (1,11)(2,12)(3,9)(4,10)(5,146)(6,147)(7,148)(8,145)(13,63)(14,64)(15,61)(16,62)(17,159)(18,160)(19,157)(20,158)(21,71)(22,72)(23,69)(24,70)(25,167)(26,168)(27,165)(28,166)(29,79)(30,80)(31,77)(32,78)(33,175)(34,176)(35,173)(36,174)(37,87)(38,88)(39,85)(40,86)(41,183)(42,184)(43,181)(44,182)(45,95)(46,96)(47,93)(48,94)(49,191)(50,192)(51,189)(52,190)(53,104)(54,101)(55,102)(56,103)(57,111)(58,112)(59,109)(60,110)(65,119)(66,120)(67,117)(68,118)(73,127)(74,128)(75,125)(76,126)(81,135)(82,136)(83,133)(84,134)(89,143)(90,144)(91,141)(92,142)(97,150)(98,151)(99,152)(100,149)(105,155)(106,156)(107,153)(108,154)(113,163)(114,164)(115,161)(116,162)(121,171)(122,172)(123,169)(124,170)(129,179)(130,180)(131,177)(132,178)(137,187)(138,188)(139,185)(140,186), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)(145,146,147,148)(149,150,151,152)(153,154,155,156)(157,158,159,160)(161,162,163,164)(165,166,167,168)(169,170,171,172)(173,174,175,176)(177,178,179,180)(181,182,183,184)(185,186,187,188)(189,190,191,192), (1,131,107,173)(2,130,108,176)(3,129,105,175)(4,132,106,174)(5,170,50,28)(6,169,51,27)(7,172,52,26)(8,171,49,25)(9,179,155,33)(10,178,156,36)(11,177,153,35)(12,180,154,34)(13,83,59,37)(14,82,60,40)(15,81,57,39)(16,84,58,38)(17,187,163,41)(18,186,164,44)(19,185,161,43)(20,188,162,42)(21,91,67,45)(22,90,68,48)(23,89,65,47)(24,92,66,46)(29,100,75,53)(30,99,76,56)(31,98,73,55)(32,97,74,54)(61,135,111,85)(62,134,112,88)(63,133,109,87)(64,136,110,86)(69,143,119,93)(70,142,120,96)(71,141,117,95)(72,144,118,94)(77,151,127,102)(78,150,128,101)(79,149,125,104)(80,152,126,103)(113,183,159,137)(114,182,160,140)(115,181,157,139)(116,184,158,138)(121,191,167,145)(122,190,168,148)(123,189,165,147)(124,192,166,146), (1,67,3,65)(2,24,4,22)(5,82,7,84)(6,39,8,37)(9,119,11,117)(10,72,12,70)(13,123,15,121)(14,168,16,166)(17,127,19,125)(18,80,20,78)(21,105,23,107)(25,109,27,111)(26,62,28,64)(29,113,31,115)(30,158,32,160)(33,89,35,91)(34,46,36,48)(38,50,40,52)(41,98,43,100)(42,54,44,56)(45,179,47,177)(49,83,51,81)(53,187,55,185)(57,167,59,165)(58,124,60,122)(61,171,63,169)(66,106,68,108)(69,153,71,155)(73,157,75,159)(74,114,76,116)(77,161,79,163)(85,145,87,147)(86,190,88,192)(90,180,92,178)(93,131,95,129)(94,176,96,174)(97,186,99,188)(101,182,103,184)(102,139,104,137)(110,172,112,170)(118,154,120,156)(126,162,128,164)(130,142,132,144)(133,189,135,191)(134,146,136,148)(138,150,140,152)(141,175,143,173)(149,183,151,181) );
G=PermutationGroup([[(1,157,57),(2,158,58),(3,159,59),(4,160,60),(5,96,101),(6,93,102),(7,94,103),(8,95,104),(9,17,109),(10,18,110),(11,19,111),(12,20,112),(13,105,113),(14,106,114),(15,107,115),(16,108,116),(21,29,121),(22,30,122),(23,31,123),(24,32,124),(25,117,125),(26,118,126),(27,119,127),(28,120,128),(33,41,133),(34,42,134),(35,43,135),(36,44,136),(37,129,137),(38,130,138),(39,131,139),(40,132,140),(45,53,145),(46,54,146),(47,55,147),(48,56,148),(49,141,149),(50,142,150),(51,143,151),(52,144,152),(61,153,161),(62,154,162),(63,155,163),(64,156,164),(65,73,165),(66,74,166),(67,75,167),(68,76,168),(69,77,169),(70,78,170),(71,79,171),(72,80,172),(81,173,181),(82,174,182),(83,175,183),(84,176,184),(85,177,185),(86,178,186),(87,179,187),(88,180,188),(89,98,189),(90,99,190),(91,100,191),(92,97,192)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64),(65,67),(66,68),(69,71),(70,72),(73,75),(74,76),(77,79),(78,80),(81,83),(82,84),(85,87),(86,88),(89,91),(90,92),(93,95),(94,96),(97,99),(98,100),(101,103),(102,104),(105,107),(106,108),(109,111),(110,112),(113,115),(114,116),(117,119),(118,120),(121,123),(122,124),(125,127),(126,128),(129,131),(130,132),(133,135),(134,136),(137,139),(138,140),(141,143),(142,144),(145,147),(146,148),(149,151),(150,152),(153,155),(154,156),(157,159),(158,160),(161,163),(162,164),(165,167),(166,168),(169,171),(170,172),(173,175),(174,176),(177,179),(178,180),(181,183),(182,184),(185,187),(186,188),(189,191),(190,192)], [(1,105),(2,106),(3,107),(4,108),(5,52),(6,49),(7,50),(8,51),(9,153),(10,154),(11,155),(12,156),(13,57),(14,58),(15,59),(16,60),(17,161),(18,162),(19,163),(20,164),(21,65),(22,66),(23,67),(24,68),(25,169),(26,170),(27,171),(28,172),(29,73),(30,74),(31,75),(32,76),(33,177),(34,178),(35,179),(36,180),(37,81),(38,82),(39,83),(40,84),(41,185),(42,186),(43,187),(44,188),(45,89),(46,90),(47,91),(48,92),(53,98),(54,99),(55,100),(56,97),(61,109),(62,110),(63,111),(64,112),(69,117),(70,118),(71,119),(72,120),(77,125),(78,126),(79,127),(80,128),(85,133),(86,134),(87,135),(88,136),(93,141),(94,142),(95,143),(96,144),(101,152),(102,149),(103,150),(104,151),(113,157),(114,158),(115,159),(116,160),(121,165),(122,166),(123,167),(124,168),(129,173),(130,174),(131,175),(132,176),(137,181),(138,182),(139,183),(140,184),(145,189),(146,190),(147,191),(148,192)], [(1,11),(2,12),(3,9),(4,10),(5,146),(6,147),(7,148),(8,145),(13,63),(14,64),(15,61),(16,62),(17,159),(18,160),(19,157),(20,158),(21,71),(22,72),(23,69),(24,70),(25,167),(26,168),(27,165),(28,166),(29,79),(30,80),(31,77),(32,78),(33,175),(34,176),(35,173),(36,174),(37,87),(38,88),(39,85),(40,86),(41,183),(42,184),(43,181),(44,182),(45,95),(46,96),(47,93),(48,94),(49,191),(50,192),(51,189),(52,190),(53,104),(54,101),(55,102),(56,103),(57,111),(58,112),(59,109),(60,110),(65,119),(66,120),(67,117),(68,118),(73,127),(74,128),(75,125),(76,126),(81,135),(82,136),(83,133),(84,134),(89,143),(90,144),(91,141),(92,142),(97,150),(98,151),(99,152),(100,149),(105,155),(106,156),(107,153),(108,154),(113,163),(114,164),(115,161),(116,162),(121,171),(122,172),(123,169),(124,170),(129,179),(130,180),(131,177),(132,178),(137,187),(138,188),(139,185),(140,186)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144),(145,146,147,148),(149,150,151,152),(153,154,155,156),(157,158,159,160),(161,162,163,164),(165,166,167,168),(169,170,171,172),(173,174,175,176),(177,178,179,180),(181,182,183,184),(185,186,187,188),(189,190,191,192)], [(1,131,107,173),(2,130,108,176),(3,129,105,175),(4,132,106,174),(5,170,50,28),(6,169,51,27),(7,172,52,26),(8,171,49,25),(9,179,155,33),(10,178,156,36),(11,177,153,35),(12,180,154,34),(13,83,59,37),(14,82,60,40),(15,81,57,39),(16,84,58,38),(17,187,163,41),(18,186,164,44),(19,185,161,43),(20,188,162,42),(21,91,67,45),(22,90,68,48),(23,89,65,47),(24,92,66,46),(29,100,75,53),(30,99,76,56),(31,98,73,55),(32,97,74,54),(61,135,111,85),(62,134,112,88),(63,133,109,87),(64,136,110,86),(69,143,119,93),(70,142,120,96),(71,141,117,95),(72,144,118,94),(77,151,127,102),(78,150,128,101),(79,149,125,104),(80,152,126,103),(113,183,159,137),(114,182,160,140),(115,181,157,139),(116,184,158,138),(121,191,167,145),(122,190,168,148),(123,189,165,147),(124,192,166,146)], [(1,67,3,65),(2,24,4,22),(5,82,7,84),(6,39,8,37),(9,119,11,117),(10,72,12,70),(13,123,15,121),(14,168,16,166),(17,127,19,125),(18,80,20,78),(21,105,23,107),(25,109,27,111),(26,62,28,64),(29,113,31,115),(30,158,32,160),(33,89,35,91),(34,46,36,48),(38,50,40,52),(41,98,43,100),(42,54,44,56),(45,179,47,177),(49,83,51,81),(53,187,55,185),(57,167,59,165),(58,124,60,122),(61,171,63,169),(66,106,68,108),(69,153,71,155),(73,157,75,159),(74,114,76,116),(77,161,79,163),(85,145,87,147),(86,190,88,192),(90,180,92,178),(93,131,95,129),(94,176,96,174),(97,186,99,188),(101,182,103,184),(102,139,104,137),(110,172,112,170),(118,154,120,156),(126,162,128,164),(130,142,132,144),(133,189,135,191),(134,146,136,148),(138,150,140,152),(141,175,143,173),(149,183,151,181)]])
66 conjugacy classes
class | 1 | 2A | ··· | 2G | 3A | 3B | 4A | ··· | 4N | 6A | ··· | 6N | 12A | ··· | 12AB |
order | 1 | 2 | ··· | 2 | 3 | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | ··· | 1 | 1 | 1 | 4 | ··· | 4 | 1 | ··· | 1 | 4 | ··· | 4 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | |||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | D4 | Q8 | C4○D4 | C3×D4 | C3×Q8 | C3×C4○D4 |
kernel | C3×C23.83C23 | C3×C2.C42 | C6×C4⋊C4 | C23.83C23 | C2.C42 | C2×C4⋊C4 | C2×C12 | C2×C12 | C2×C6 | C2×C4 | C2×C4 | C22 |
# reps | 1 | 5 | 2 | 2 | 10 | 4 | 2 | 2 | 10 | 4 | 4 | 20 |
Matrix representation of C3×C23.83C23 ►in GL6(𝔽13)
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 0 | 9 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
5 | 7 | 0 | 0 | 0 | 0 |
4 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 12 | 0 | 0 |
0 | 0 | 11 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 0 |
12 | 9 | 0 | 0 | 0 | 0 |
7 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 1 | 0 | 0 |
0 | 0 | 4 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 0 | 5 |
8 | 11 | 0 | 0 | 0 | 0 |
12 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 5 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
G:=sub<GL(6,GF(13))| [3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[5,4,0,0,0,0,7,8,0,0,0,0,0,0,7,11,0,0,0,0,12,6,0,0,0,0,0,0,0,1,0,0,0,0,12,0],[12,7,0,0,0,0,9,1,0,0,0,0,0,0,6,4,0,0,0,0,1,7,0,0,0,0,0,0,8,0,0,0,0,0,0,5],[8,12,0,0,0,0,11,5,0,0,0,0,0,0,5,5,0,0,0,0,0,8,0,0,0,0,0,0,0,12,0,0,0,0,1,0] >;
C3×C23.83C23 in GAP, Magma, Sage, TeX
C_3\times C_2^3._{83}C_2^3
% in TeX
G:=Group("C3xC2^3.83C2^3");
// GroupNames label
G:=SmallGroup(192,833);
// by ID
G=gap.SmallGroup(192,833);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,168,365,512,1094,1059,142]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^2=1,e^2=g^2=b,f^2=c*b=b*c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*d=d*b,f*e*f^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,g*f*g^-1=d*f=f*d,d*g=g*d>;
// generators/relations